URL prediction, Random Forest Malicious URL Prediction Using Classification Approach with Random Forest and LightGBM Algorithms

Authors

  • I Wayan Indra Sakti Sanjaya Sanjaya Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Oktavia Nur Khasanah Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Eka Maurita Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Anggraini Puspita Sari Universitas Pembangunan Nasional “Veteran” Jawa Timur

Keywords:

URL prediction, classification, Random Forest, LightGBM, internet security

Abstract

This study aims to develop a method for predicting malicious URLs using Random Forest and LightGBM algorithms. The dataset used in this research comprises 651.191 URLs categorized as benign, defacement, phishing, and malware. Key features such as URL length, number of directories, and URL abnormality are extracted and used to train the models. Evaluation results indicate that both algorithms have high accuracy in classifying URLs based on the provided features. The program allows users to input URLs for evaluation and provides predictions on the URL categories. The developed method is expected to enhance digital security by providing an effective prediction tool against malicious URL threats.

Author Biographies

I Wayan Indra Sakti Sanjaya Sanjaya, Universitas Pembangunan Nasional “Veteran” Jawa Timur

Informatics Study Program, Faculty of Computer Science, Universitas Pembangunan Nasional "Veteran" Jawa Timur

Oktavia Nur Khasanah, Universitas Pembangunan Nasional “Veteran” Jawa Timur

Informatics Study Program, Faculty of Computer Science, Universitas Pembangunan Nasional "Veteran" Jawa Timur

Eka Maurita, Universitas Pembangunan Nasional “Veteran” Jawa Timur

Informatics Study Program, Faculty of Computer Science, Universitas Pembangunan Nasional "Veteran" Jawa Timur

Anggraini Puspita Sari, Universitas Pembangunan Nasional “Veteran” Jawa Timur

Informatics Study Program, Faculty of Computer Science, Universitas Pembangunan Nasional "Veteran" East Java

Published

2025-01-09 — Updated on 2025-01-09

Versions

How to Cite

Sanjaya, I. W. I. S. S., Oktavia Nur Khasanah, Eka Maurita, & Anggraini Puspita Sari. (2025). URL prediction, Random Forest Malicious URL Prediction Using Classification Approach with Random Forest and LightGBM Algorithms. Jurnal Informatika Software Dan Network (JISN), 5(2). Retrieved from https://jurnal.dccpringsewu.ac.id/index.php/ji/article/view/67